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Thermodynamics of the massive Thirring-sine-Gordon model: 
the Bethe ansatz variational method 

S G Chung i  and  Yia-Chung Chang 
Department o f  Physics and Materials Research Laboratory, 
University of Illinois at Urbana-Champaign, Urbana, I L  61801, USA 

Received 4 October 1985, in final form 3 November 1986 

Abstract. The Bethe ansatz variational approach to the thermodynamics of the massive 
Thirring-sine-Gordon model in the attractive coupling regime and in the zero-change sector 
is discussed in detail. 

1. Introduction 

The massive Thirring model ( M T M )  is a theory of self-interacting fermions with mass 
ma in one  dimension described by the Lagrangian 

2 = i q  - y P d , + q  - moqY - ;gojPjP (1.1) 

where jp  = f[q, y F Y ]  is the fermion current and  go is the coupling constant. In a basis 
in which y 5  is diagonal, the Hamiltonian is written as (letting q = (TI)) 
H = d x  [-i(9id,yYl - 'u:d ,q2)+ m o ( q ~ Y ~ + q ~ q , ) + 2 g o q ~ q ~ q ~ Y l ] .  (1.2) i 
This model attracted much interest originally as a model for describing the electron 
gas with local interactions. Recently, two new aspects of this model have been revealed. 
First, it was demonstrated that the MTM is equivalent to the spin-; Heisenberg model 
in a continuum limit [ 11. This equivalence has led to some understanding of the MTM 

thermodynamics [2], because the thermodynamics of the spin-4 Heisenberg model had 
been thoroughly studied by the Bethe ansatz ( B A )  method [3]. Second, it was also 
shown that the MTM is equivalent to the sine-Gordon (SG) model [4, 51. This is an  
important aspect, since the SG model has such generality and simplicity that one 
frequently encounters the model in many subfields of physics. One  of the most 
challenging problems in recent soliton physics has been to understand the quantum 
statistical mechanics of the SG model [6]. Several years ago, when the quantum inverse 
scattering technique was first developed for the SG system [7], people expected it to 
shed new light on this problem. However, the resulting BA state turns out to be so 
complicated that the construction of the statistical mechanics based on it seems almost 
impossible. 

In  this paper, we shall give a full description of the MTM-SG thermodynamics in 
the attractive regime and  in the zero-charge sector. We start with the BA theory of 
MTM recently developed by Bergknoff and  Thacker (BT)  [8] and Korepin [9]. We then 

+ Present address: Department of Physics, Western Michigan University, Kalamazoo, M I  49008, USA. 

0305-4470/87/ 102875 1- 20S02.50 @ 1987 IOP Publishing Ltd 2875 



2876 S G Chung and Y-C Chang 

extend their theory to study the quantisation of multi-elementary excitations in MTM. 

The elementary excitations in MTM include breathers, Korepin’s excitations and free 
holes. We show that the quantisation of the physical momentum of each elementary 
excitation can be written in a BA form in terms of renormalised phase shifts due to 
scatterings with all other elementary excitations. Finally we formulate the MTM ther- 
modynamics using the BA variational method initiated by Yang and Yang [lo] and 
further developed by Gaudin [ l l ]  and Takahashi and Suzuki [3]. One can refer to 
our method as the direct BA method in order to distinguish it from the other type of 
EA formalism which was developed mainly by Fowler and Zotos (FZ) [2]. The latter 
was based on the Takahashi-Suzuki formalism originally developed for the spin-; 
Heisenberg model thermodynamics. 

One major finding of our study is that, at finite temperatures, the excitation energy 
of the soliton (antisoliton) is discontinuous as a function of the coupling constant, 
whereas the breather excitation energy and the free energy are continuous. A pre- 
liminary report of this finding was presented in [ 121. 

The present paper is organised as follows. In  the next section, we give a compact 
and unified description of the Hamiltonian eigenstates, physical vacuum and elementary 
excitations based on the studies of BT [8], Korepin [9] and the present authors [13]. 
In § 3, we quantise generic excited states on the physical vacuum by imposing periodic 
boundary conditions ( PBC). We show that the interaction between elementary excita- 
tions can be described in terms of the renormalised two-body S matrices. In § 4, the 
MTM thermodynamics is formulated by the BA variational method and the finite- 
temperature excitation spectrum is discussed. The latter half of § 4 is devoted to some 
analysis of the basic equations obtained regarding the discontinuity of soliton mass at 
finite temperatures and the unphysical nature of Korepin’s excitations. A summary 
and some concluding remarks are given in the final section. 

After the completion of the present paper, we have received strong criticism that 
the soliton mass cannot be discontinuous. Several authors [20] proposed a definition 
of soliton mass which leads to a continuous soliton mass. They disputed that our 
equation (4.15) is a definition of soliton mass, saying that it is a wrong definition 
because it  leads to an unphysical discontinuity in the soliton mass. We do not agree with 
these authors, but the reader should be referred to [20] and critically examine our 
arguments in the paper. 

2. Hamiltonian eigenstates, physical vacuum and elementary excitations 

We start with the Bethe ansatz wavefunction of BT: 

N 

IP1 . . . P N )  = I dxl  . . . d x N x ( P I  . . . P N ,  x )  n A’@,, x,)lO) I 1 = l  
(2.1) 

with 

where the P are rapidity variables, 

f o r x > O  
for x < 0 

&(X) = 
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with cot 2 0 ( p )  = sinh P. One can easily see that (2.1) is a n  eigenstate of the Hamiltonian 
(1.2) with energy 

N 

E = 1 mo cosh P I .  
i= 1 

Equation (2.1) is also an  eigenstate of the momentum operator 

G = -i d x ( q i d x q 1  +VidYq2) I 
with the momentum 

N 

P =  1 mo sinh P I .  
i= 1 

(2.6) 

It is seen from (2.1) that the two-body S matrix for the scattering of two bare excitations 
with rapidities P I  and P, is 

where c$(P)  is the two-body phase shift: 

= 2 tan-'[cot p t anh(p /2) ]  (2.8) 
sinh(P/2 - pi) 
sinh(P/2 + p i )  

and where p = -cot-'(go/2). Note that go> 0 (repulsive interaction), go = 0 (free 
fermion theory) and go < 0 (attractive interaction) correspond, respectively, to p < ~ / 2 ,  
p = ~ / 2  and  p > 7712. In this paper we restrict ourselves to the attractive case p > 712. 

The bare elementary excitations described by (2.1) were studied by BT and Korepin. 
The simplest of these is the Dirac sea mode /.? = (Y +i.rr, where (Y is real. This mode 
has a negative energy. Filling u p  the Dirac sea modes gives a physical vacuum (see 
below). The elementary excitations which have normalisable wavefunctions are gen- 
erally called 'n-strings' because they are represented by a vertical array of n points in 
the complex rapidity plane [ 8 , 9 ] :  

(2.9) 
where a,  is real, B = 0 or 1 and  w = rr - p .  The integer n in (2.9) is not arbitrary. The 
conditions for allowed n are 

PI, = a, + irrB + iwl r, = -(n - I ) ,  -(n -3), . . . , ( n  - 1) 

i f B = O  
i f B = 1  

f o r p = 1 , 2  , . . . ,  n-1 .  sin pw sin( n - p ) w  (2.10) 

Since O <  w < rr, one can show that (2.10) is equivalent to 

where [ ] is the Gauss symbol. The solution of (2.11) can be found in [3]. The method 
is to express the number Po= T / W  as a continued fraction: 

1 
Po= v,+- 

v,+ . e .  

(2.12) 
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where v,, v 2 ,  . . ., are integers 3 2 .  Note that Po = 2 corresponds to p = 7712, the free 
fermion theory. For each step v,, v2,. . . , of the continued fraction, there exists a 
corresponding set of integers n [3]. 

In  this paper, we examine the case Po = v, + 1 /  v2. As will become clear below, by 
studying this case we can understand essential aspects of the MTM thermodynamics in 
the attractive coupling regime. In this case, the allowed strings are 

= { 1 , 2 ,  . . . ,v, and 1 +jv, ( j  = odd 4 ~ 2 )  f o r B = O  
1 + jv, ( j  = even s v2) for B = 1 .  (2.13) 

The allowed strings for the simple case v, = 2 and v 2  = 3 are illustrated in figure 1 .  
Let us now construct the physical vacuum and consider one-string excitation on 

it. First consider the physical vacuum [8]. This is obtained by filling the Dirac sea. 
The distribution of the Dirac sea modes in the rapidity space can be determined by 
imposing periodic boundary conditions (PBC) on the Dirac sea mode: 

(2.14) X ( X i  = 0) = X ( X i  = L )  i = 1 , 2 , .  . . , N 

where L is the system length. From (2.2) and (2.14) we have 

277n. 1 
m, sinh a ,  =a+- 

2 L  L 4 (  a, - (2.15) 

where n, are integers. In the limit L + CO, we define the density distribution of Dirac 
sea modes, p ( a ) ,  by 

1 
p ( a )  = lim 

L-.= L(a ,+ , -a , ) '  (2.16) 

It is noted that, by continuity from the free fermion theory, 

n,,, = n, + 1 (2.17) 

P p lane  X X 

2ni X X 

X X ni X 

X 

-2ni  X 

X 

n.1 n.2 n : 3  n : 5  n.7 

Brea the r  j = O  J = l  J : 2  1 - 3  

K e x c i t a t i o n  

Figure 1. Allowed strings for f,, = 2 + f .  
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in the physical vacuum. Subtracting (2.15) from (2.15) with i replaced by i + 1, and  
using (2.16) and  (2.17) gives 

mocosh a = 2 x p ( a ) +  d a ' - 4 ( a  - a ' ) p ( a ' )  I-', ,"a (2.18) 

where '4 is a rapidity cutoff associated with mass renormalisation. The integral equation 
(2.18) can be solved via Fourier transformation. The solution is 

1 
p ( a ) = - M , c o s h  y a  

4 P  
where y = x / 2 p  and 

(2.19) 

(2.20) 

It will become clear that M, represents the physical mass of the SG soliton at zero 
temperature. 

Next, consider one n-string excitation upon the physical vacuum [8, 9, 131. In the 
zero-charge sector, to which we restrict ourselves in this paper, the n-string should 
accompany n holes in the Dirac sea. There are two types of holes. Some holes are 
tied to the string, i.e. the real part of their rapidities is equal to that of the string (a, ,) .  
Other holes are free from the string, i.e. the real parts of their rapidities can be any 
values other than a,,, thus representing additional freedoms. We shall refer to the two 
types of holes as 'fixed' and  'free' holes. The n-string, along with the holes tied to it, 
will be treated as an  elementary excitation and each of the free holes regarded as an  
elementary excitation. The number of holes tied to an  n-string can be found by 
examining the discontinuity at a = a,, of the phase shift, @(a,  a,,), which the n-string 
experiences upon the collision with a Dirac sea mode at a +ix .  Using (2.8) and (2.9), 
we have 

n - 1  

@(a,a , , )= 1 4 ( a + i r - P I , , )  
f , ,  = - ( , , - I )  

= G n c l ( a ,  a,)+G,,-I(a,  a , , ) - A ( n ) m ( a  -a , )  (2.21) 

where 

G,,,(a, a n ) = 2 t a n - ' ( t a n h ~ ( a - a , , ) c o t f [ m p - ( n - B ) r ] }  (2.22) 

and 

A ( n )  = n+2(1,,+,+1,,- ,)+2(1 - B )  (2.23) 
where the integer I,,, is defined by (using the Gauss symbol [ 3 )  

I,,, = [ m p / 2  x - ( n - B)/2]. 

For allowed n as given by (2.13), we can show that 
(2.24) 

In+] = I , , - ] .  (2.25) 
Now to see that the quantity A ( n )  represents the number of fixed holes, we consider 
PBC for Dirac sea modes p, = 6, +ix in the presence of the n-string 

2xti 1 1 
m,sinh 6, =-+-E 4 ( E , - 6 , ) + - - Q n ( 6 , ,  a,,). 

L J  L ( 2 . 2 6 )  
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Comparing (2.26) for two neighbouring Dirac sea modes 15, and G m + l  such that 
6, < a ,  < we have 

27rn,*, 1 2m7, 1 21r 
L L L  L 

+ ~ @ & + , ,  a,) =-+-@”(&, a,)+- 

or 
n,+ I - n, = A( n ) + 1, 

(2.27) 

(2.28) 

Equation (2.28) means that A( n)  Dirac sea modes disappear from the physical vacuum, 
or equivalently, A( n )  holes are created at a,  due to the presence of the n-string. Figure 
2 illustrates the three-string excitation from the physical vacuum for the case Po = 2+4. 
Note that for n = 3, B = 0 and p = 47r/7, (2.23)-(2.25) give A(3) = 1 and therefore we 
have one fixed hole. ................. 

I l l \ \ \ \  / / / I / I I I I  
I I I I  n ,  , : : , : : : : : : 4 : : : x x x x  

X 

p plane 

X 

Figure 2. The three-string excitation from the physical vacuum for the case Po = 2+;. Full 
circles represent unperturbed Dirac sea modes, whereas crosses at Im p = T perturbed ones. 

To calculate the physical energy and physical momentum of elementary excitations, 
we have to determine the vacuum polarisation in the presence of the n-string. Subtract- 
ing (2.15) from (2.26), and defining 

F ( a )  = l i m ( 6 , - a l ) / ( a l + , - a l )  (2.29) 
L - x  

we obtain 

27rF(a) =@,(a ,  a,)-A(n)C$(a -a , ) -  d a ’  F(a’)-C$(a - a ’ )  (2.30) 

where we have used (2.18) and put A = m  because the integration here converges. 
Equation (2.30) has the same structure as (2.18) and can be solved by the Fourier 
transform method. Now with (2.4), the physical energy of the n-string can be computed 
by subtracting vacuum-state energy from the excited-state energy: 

E,(a,) = d a  F ( a )  sinh a. (2.31) 

Substituting the Fourier transform of F ( a )  obtained from (2.30) into (2.31) gives the 
physical energy of the n-string as 

d X I-, aa 

mo cosh PI, ,  + A (  n)mo cosh a,  - m, 
I,, 5: 
2Ms sin[in.rr(2y - l ) ]  cosh ya n = l , 2  , . . . ,  v , - 1  

otherwise. En(a)  = ( ( 2 . 3 2 ~ )  
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Similarly, the physical momentum is given as 

1 d  
P n ( a )  =- - E n ( a ) .  

Y d a  
(2.326) 

The first spectrum of (2.32) (n = 1,. . . , v, - 1) is precisely the SG breather spectrum of 
Dashen, Hasslacher and Neveu ( D H N )  [ 141. The strings of vanishing physical energy 
are ( n  = v 1  and 1 + j v l  ; j = 1, .  . . , v2) called the Korepin excitations ( K  excitations). 
Finally the physical energy of a free hole is similarly calculated by replacing the first 
two terms in (2.30) and (2.31) by - 4 ( a  --ah) and mo cosh ah,  respectively. We have 

(2.33) 

The physical momentum of a hole is given by the same formula as (2.32b). It is noted 
that since a hole excitation in the MTM corresponds to an antisoliton excitation in the 
SG theory, M ,  should be identified as the antisoliton (or soliton) mass, whose coupling 
constant dependence was studied by D H N  [ 141: 

M ,  = MZpL/u (2.34) 

E h o l e ( a h )  = M s  cosh yah. 

where MP is the free soliton mass. We put MP= 1 hereafter. 

3. Multiple elementary excitations and two-body S matrices 

In the previous section, we studied one elementary excitation in the physical vacuum. 
Our next step is to consider simultaneous excitations of many breathers, holes and K 
excitations and quantise their energies by imposing PBC. This leads to the determination 
of renormalised two-body S matrices between elementary excitations. Korepin first 
calculated two-body S matrices of the MTM [9], but his procedures are not quite clear 
and the S matrices obtained contain undetermined constants. A natural and unam- 
biguous way of determining the S matrices is to impose PBC on elementary excitations 
as well as the Dirac sea modes. 

In the presence of multiple elementary excitations equation (2.30) for the vacuum 
polarisation F ( a )  as defined by (2.29) is now replaced by 

2 r F ( a ) = C  [@), (a ,  a n ) - A ( n ) 4 ( a - a , ) l - C  4 ( a - a ~ )  
n k 

where X n  means a summation over n-strings and X k  over free holes. We note that the 
vacuum polarisation is an additive quantity, i.e. 

(3.2) 

where F n ( a )  and F k ( a ) ,  respectively, satisfy (3.1) with the first two terms on the right 
replaced by @ , , ( a , a n ) - A ( n ) 4 ( a - a , )  and - 4 ( a - a k ) .  

NOW imposing PBC on the n-string gives 

27T . 1 1 
mo c sinh PI,, = - x Integer+- C' @ n ( & ,  a,) + L  c c 1 4(/3,$,, - p,,, (3.3) 

I t ,  L Li m * n  I , , ,  I , ,  
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where 2 ;  is over the occupied Dirac sea modes i, = Cy, +i7r. Expanding the function 
@ , ( C y , ,  a,) at the unperturbed position a, in the Dirac sea and summing over i gives 

C ' Q n ( & , ,  a n ) = C @ n ( a , ,  a n ) - C @ n ( a k ,  an)--CA(m)@n(am, a n )  
I , I m 

(3.41 

where X, is over all Dirac sea modes. A similar equation can be derived when only 
one n-string exists. Subtracting the resulting equation from (3.4) yields 

C @ n ( & , ,  a n )  =C Q n ( ~ r 9  an)-C @ n ( a k ,  a n ) -  1 A(m)@n(am, an) 
I I k m t n  

(3.5) 

where di, represent real parts of the Dirac sea modes in the presence of the n-string alone. 
On the other hand, subtracting (2.15) from (2.26) and summing over i gives 

1 1 
- l Q n ( G , ,  a n ) = ~ A ( n ) C 9 ( a , - a , ) + m ,  d a F , ( a ) c o s h a .  (3.6) 

Expanding 4 ( a ,  -a,) at the unperturbed position a: in the Dirac sea and summing 
over i gives 

L ,  I I-', 

Substituting (2.15) and (2.18) into (3 .7)  yields 

1 27r 257 -C 4(al -a , )  =-x integer+--(a,) - mn sinh a,, 
L ,  L L 

Using (3.6) and (3.81, we obtain the physical momentum of the n-string as 

27r 
L 

1 
Pn(an)  = m, C sinh PI,, -- C @,,(ci,, a,) + A( n )  x integer+-A( n ) F (  a,) 

'$1 L l  

Substituting (3.3) and (3.5) into (3.9) gives 

where 

and 

(3.7) 

(3.8) 

(3.9) 

(3.10a) 

(3.106) 

( 3 . 1 0 ~ )  
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As for the free hole, we note that its position ak is shifted from the corresponding 
position a: in the unperturbed Dirac sea due  to the presence of other holes and strings. 
Expanding the physical momentum of the kth hole at a t  and using (2.19) and (2.29), 
we have 

P n ( a A ) =  M,sinh y a k =  M,sinh y a ~ + M , y c o s h a A ( a k - a : )  

277 2 7  
L L 

-- - x integer +- F( c y k ) .  (3.11) 

With (3.2) we can write (3.11) as 

(3.12) 
277 1 

p h ( a k )  =-x integer+- 1 A ,  
L L , # k  

where j runs over strings and  holes and 

Ak, = 2 ~ F , ( a k ) .  (3.13) 

Notice that the h as defined by (3.10b), ( 3 . 1 0 ~ )  and (3.13) are composed of bare 
phase shifts between elementary excitations and additional phase shifts due to the 
vacuum polarisation in the presence of other elementary excitations. Thus the A 
represent renormalised phase shifts for the scattering between two elementary excita- 
tions. A can be evaluated again by the Fourier transform method. An example of 
calculations is given in the appendix. The results are 

hb,b,,(a)(mth breather-nth breather) 

A:h(cy) (n th  breather-hole) = ( ( a ,  n -21+ 1, 1) 
I =  I 

where m, n = 1 , 2 , .  . . , vI  - 1 and 

sinh y a  - i sin y( kw + 7D) 
sinh ya  + i sin y( kw + 7D) 

[ ( a ,  k ,  D )  = -i In 

(3.15) 

(3.16) 

sinh( 7 - 2 ~ ) y  
Ahh(a)(hole-hole) = (3.17) 

y sinh TJJ + sinh( T - 2p) j "  

We find that breathers d o  not interact with K excitations. We also find that the 
n = 1 + v1 v 2  K excitation does not interact with any other elementary excitations. 
Therefore, the only possible way for this excitation to affect the MTM thermodynamics 
is through the charge-neutrality constraint, because this excitation carries a non-zero 
charge. In  the variational formulation of the thermodynamics below, this charge- 
neutrality condition can be treated by introducing a chemical potential conjugate to 
the charge. However, since antisolitons have charges opposite to those of solitons, 
this chemical potential should be zero in order that, in the zero-charge sector, the 
theory is symmetric with respect to solitons and antisolitons. This means that the 
n = 1 + v ,  Y, K excitation does not affect the M T M  thermodynamics. We thus discard 
this K excitation. For simplicity, we shall call the n = v, and n = 1 +jv, ( j  = 
1,2, . . . , v2 - 1) K excitations the zeroth and j t h  K excitations and denote them by 
n = n , ; j = O , l ,  . . . ,  v2-1  ( see f igu re l ) .  F o r i , j = 0 , 1 , 2  , . . . ,  v 2 - l , w e h a v e  

AFh(a ) ( j t h  K excitation-hole) = i ( a ,  n, - 1, M,) (3.18) 
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- A t K (  a ) (  ith K excitation-jth K excitation) 

where M, = [ n, - A (  n,)]/2 and 

sinh[  cy + iwn - irrM)/2w] 
sinh[rr(cy -iwn + i r r M ) / 2 w ]  

l( a, n, M )  = -i In 

(3.19) 

(3.20) 

With (2.23)-(2.25) we can easily show that 

M O =  1 and M, = i f o r i = 1 , 2  , . . . ,  v,-1. (3.21) 

We thus complete the quantisation of physical momenta of elementary excitations. 
For later convenience, we put together (3.10) and (3.12) in a compact form. Let p,(cy) 
denote the density distribution of the i-kind excitation in the rapidity space. Then 
(3.10) and (3.12) can be written as 

2rr 1 4 ( a )  = - X integer +- 
L L ,  A,, * p, (3.22) 

where i and j run over breathers, free hole and K excitations and we have introduced 
a convenient notation 

(3.23) 

4. Thermodynamics and finite-temperature excitations 

In  Q 3, we have quantised generic excited states and reached the renormalised phase 
shift between renormalised elementary excitations. In this section, we will perform 
remaining procedures in the BA variational formulation of the MTM thermodynamics. 

Let us first introduce distribution densities of unoccupied cy, pi(cy), for breathers, 
holes and K excitations. Then, differentiating (3.22) with respect to cy gives 

where sgn(j)  = 1 for j denoting breathers, free hole and the zeroth K excitation ( n  = v, 
string) and -1 for j denoting other K excitations. In a previous letter [ 121, we have 
argued that the negative sgn(j)  for K excitations with j = 1 ,2 , .  . . , v 2  - 1 comes from 
the fact that the bare energies are negative for these K excitations. However, this 
argument is not satisfactory, because the physical momenta are zero for these K 
excitations. Therefore, we have determined sgn(j)  for K excitations by explicitly 
looking at the signs of ah,,/& in (4.1). Equation (4.1) provides a relationship between 
densities p,(a) and ;,(a) since d P , ( a ) / d a  are known. 

We now derive the other relationship between p, and 6,. The internal energy, E, is 
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where i runs over breathers and free holes. The local entropy, AS, in the interval 
( a ,  a + A a )  is given by 

(4.3) 

where we have put Boltzmann’s constant = 1. Therefore, the total entropy, S, is 

s = L c J [ ( p ,  + P’, I n ( p ,  + P’ , )  - pI In p, - P’, In P’! I. (4.4) 
I - x  

Thus the free energy F = E - TS can be written in terms of pI and p’,.  Using (4.1), we 
can finally write the free energy in terms of pt alone. In  minimising the free energy 
with respect to variations of densities 6p , ,  we keep it in mind that the constant-charge 
restriction is automatically satisfied in the neutral-charge sector, because the associated 
chemical potential should be zero (see 5 3). The minimisation of the free energy gives 

(4.5) 
T a & , ( a )  = E, (a )+-x  sgn(i)-A,, * In[l +exp(-&, /TI]  

2.rr , aa 

where the temperature, T, is measured in the unit of the zero-temperature free soliton 
mass, M t ,  and we have defined 

$pJ = exp(E,/ TI. (4.6) 

Equations (4.1) and (4.5) are the basic equations which describe the MTM-SG 

thermodynamics for Po = v, + 1/ v2 and v, and v2 2 2 .  The quantities E,( a )  are the MTM 

correspondents of the Yang and Yang E function in the non-linear Schrodinger model 
and  play a central role in the MTM thermodynamics. 

Two remarks are in order at this point. First, we can obtain the free energy in 
terms of el by carrying out 

T 
2.rr 

7 I-: d a  (equation (4.1) sgn( j)- In[ 1 + exp( - E , /  T)] - equation ( 4 . 5 ) ~ ~  

Note that only holes and  breathers contribute to the free energy, since the physical 
energies are zero for all the K excitations. This and other unphysical aspects of the 
K excitations have beeen previously pointed out [ 131. However, the existence of these 
exotic excitations is crucial for us to be able to incorporate the soliton-antisoliton 
backscattering in the Bethe wavefunction which is written in terms of forward scatterings 
only. Second, we can show that &,(a) represents the excitation spectrum at finite 
temperatures. (Here j denotes only holes and  breathers due to the above argument.) 
To see this, consider an excitation in which a j-kind elementary excitation at (Yk is 
moved to & k .  This excitation is accompanied by a polarisation of other modes a,,[ + &,.,, 
where i runs over all kinds of excitations and  1 labels their rapidities. Therefore, the 
excitation energy, AE, is given by 

(4.8) 
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where x l (  a )  describes the polarisation of the i-kind elementary excitations: 

x , ( a )  = lim .U&,,, - a,,,).  (4.9) 
L-7^ 

The equations which determine x , ( a )  can be obtained by subtracting PBC for the 
distribution {a,,,} from those for {Ci,,,} (cf (3.22)) as 

(4.10) 

Substituting (4.1) into (4.10) gives 

We rewrite (4.5) (through integration by parts) as 
X 

de ' (a ' ) .  (4.12) 
1 

EJ , ( a ) -E , , ( a )= -zsgn( i )  d a ' A l , . ( a ' - a ) [ l + e x p ( ~ , ( a ' ) / T ) ] - ' -  
277 I d a '  

Carrying out 

d F 1 d a  p,,X;,-(equation (4.12)) 
--x aa 

and using (4.11), we obtain 
x TI d a p l x r  d E , ( a ) l d a  =&,(CUk)-E,(~k)-~, (ak)+E,(ak) .  (4.13) 

- X  

From (4.8) and (4.12) we finally obtain the excitation energy 

A E  = & , ( ( Y k ) - & , ( C K k ) .  (4.14) 

The above argument can be generalised to the case of finite number of elementary 
excitations of various kinds. Thus, we can interpret ~ ~ ( a )  as the thermally renormalised 
energy of the j-kind elementary excitation. 

Here it is noted that in the zero-charge sector, densities of solitons and  antisolitons 
are by symmetry the same at any point in the rapidity space. Since K excitations carry 
only charges and not free energies, the contribution of holes to the local (in the rapidity 
space) free energy should be twice as much as that of solitons. In light of (4.7), we 
have claimed in a previous letter [12] that 

1 + exp(-Eh/ T )  = [ 1 + exp( - E ' /  T I ] *  (4.15) 

with E' representing the soliton energy. However, (4.15) is not conclusive because 
there is no  guarantee that the contribution of solitons to the local free energy can also 
be written as 
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Fortunately, however, our conjecture in the above has recently been given a justification 
in the factorised S-matrix formulation of the MTM thermodynamics [15]. Thus, we 
can safely use (4.15) below, although it cannot be shown within a framework of the 
BA formalism. 

Returning to (4.5), we note that 

for j denoting hole and  K excitations, and  0 and v2- 1, respectively, denoting the 
zeroth and ( v2 - 1)th K excitations. Therefore 

&:(a) = -2-i(4. (4.17) 

This demonstrates the unphysical aspect of K excitations, because either one of the 
two ‘thermally renormalised energies’ should be negative. A simple substitution of 
(4.17) into (4.5) contains a term proportional to ln(1 +exp(E$l/ T ) )  which diverges 
in the limit v 2  + CC (see (4.25) below). To avoid this difficulty we first solve the equation 
for T F ~ - ~  = E F ~ - ~ /  T, and then substitute the resulting ~ f j , - ~  into the remaining equations. 
Although calculations are rather lengthy, the procedures are straightforward. First, 
we carry out the phase shift derivatives to obtain 

T:2-l-s;*T:2-l 
Y z - 2  

= C ( s:+~ + *In[ 1 + exp( - t7 f<) ]  + 2s; *In[ 1 +exp(-TtJ,_ 
, = I  

+ s: *In[ 1 + exp(-qJ] (4.18) 

where we have defined 

Po sin( .rrPoj) 
cosh Poa * COS( .rrPoj) 

s ; (a)  = (4.19) 

Equation (4.18) can be solved by the Fourier transform method to give TF2-i in terms 
of the quantities ln(1 +e-”) .  Next, substituting vF?-l into terms in (4.5) containing 

where i denotes hole or  K excitations, and  integrating once, we obtain qh and 
T : ( j  = 1 , 2 , .  . . , vz-2) in terms of the quantities ln(1 + e - 9 ) .  The result is 

7; = >+ C e”,”, * In[ l+  exp(-~,bm)] + oh,b* 1n[1+ e x p ( - ~ ~ ) ]  
~b u l - l  

T m = i  

n = 1 , 2 , .  . . , v ,  - 1 (4.20a) 

(4.20b) 
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j =  1 , 2 , .  . . , v,-1 ( 4 . 2 0 ~ )  

where 

(4.21a) 

(4.21 b) 

( 4 . 2 1 ~ )  

and 

( 4 . 2 2 ~ )  

where 

(4.23) 

Solving the coupled integral equations (4.20)-(4.23) we can find the excitation 
spectra at finite temperatures, the free energy and hence all the thermodynamic 
quantities. For finite vl and v 2 ,  the above basic equations are beyond analytical 
treatments, and we have to resort to numerical calculations. On the other hand, in the 
limit v2 + a3 we can partly solve the equations and simplify them as follows. In this 
limit, S( a, k )  + 6 (  a) in (4.23), and ( 4 . 2 0 ~ )  for finite j becomes 

7: = In[ 1 + exp(-qh)] + C 2i In[ 1 + exp(-qj<)] 

1 cosh{Pov2a/[2( v2 - l)]} sin{k1r/[2( v2 - l)]} 
S ( a ,  k )  = 

w ( l - l / ~ z )  C O S ~ [ P ~ Y , ( Y / ( V ~ - ~ ) ] - C O S [ ~ I ~ / ( V ~ - ~ ) ]  ‘ 

1‘1 

s 

+ (2 j  - 1) In[l +exp(-q:)] + C 2 j  In[l +exp(-qf()]. (4.24) 

A similar equation to (4.24) was solved previously by Johnson [16]. Following similar 
procedures gives 

” J  

[ 1 + e ~ p ( q J K ) ] ~ ’ * = j + [ 1 + e x p ( - q ~ ) ] ~ ’ *  f o r j 2  1. (4.25) 

With (4.24) for j = 1 and (4.25), the fourth term on the right of (4.206) becomes 
Jc 

- 2 ln[l+exp(-q:)]= --1n{1+[1 +exp(-qh)]-”*}. (4.26) 

0 when v2+ 00 as is seen from (4 .22~) .  I n  this way, (4.20b) becomes 

/ = I  

Note also that 

+ 6Yh* In[ 1 + exp( -qh)]  - In{ 1 + [ 1 + exp( -qh)]-”‘}. (4.206‘) 
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(4.20a, b’)  provide closed equations for v h  and 7; ( n  = 1 ,2 , .  . . , v i  - 1) .  These 
equations were also derived by Imada et a1 [2] based on the Takahashi-Suzuki 
formalism [3]. 

Now a puzzling question arises concerning the basic equations for the cases Po = v i  
and v i  + O .  The two sets of equations differ from each other, although it was proved 
by Araki [ 171 that the free energy of the system is an analytic function of the coupling 
constant. The case Po = vl was carefully examined by the present authors in a previous 
letter [13]. In this case we have n = 1 ,2 , .  . . , vI  -2 breathers, solitons and antisolitons 
as elementary excitations. By symmetry, solitons and antisolitons behave in precisely 
the same manner and the basic thermodynamic equations for the case Po = v 1  are 

Y - 2  
El: 6; = -+ e”,”, * In[ 1 + exp(-Gb,)] + 26;h* In[ 1 - exp(-Gs)] 
T m = i  

n = 1 , 2 , .  . . , v l  -2  ( 4 . 2 7 ~ )  

Eh  is=-+ 1 6:h * l n [ l+e~p( -7 j ; ) ]+20 :~  * ln[l+exp(-G’)]. 
T n = i  

(4.276) 

The free energy is given in terms of 6 as 

F I L = - - ~  d a  E l ( @ )  ln[l+exp(-f,)] (4.28) 

where j runs over v I  -2 kinds of breather, soliton and antisoliton. (4.27a, b )  were also 
derived by Fowler [18a] based on [3]-t. To see a smooth change of the free energy at 
the point Po = v l ,  we examine ( 4 . 2 0 ~ )  for j = v 1  - 1. From (3.14)-(3.17) and (4.21) we 
can show that 

2r yT  J r --oC 

( 4 . 2 9 ~ )  

(4.29b) 

e;;:_, = 26Yh+ ( 4 . 2 9 ~ )  

With these relationships, ( 4 . 2 0 ~ )  for n = vi  - 1 becomes 

In[ l+ exp( vby,-,,] - In[ 1 + exp(-vh)] 

6b,h*1n[l+exp(-~b,)]+6:h*1n[l+exp(-~h)] 

= 2[qh + In{ I + [ I  + e ~ p ( - ~ ~ ) ] - ” ~ } ]  (4.30) 

where the second equality is due to (4.206‘). Therefore 

[ 1 + exp( vbyl - = exp( 7 h){ 1 + [ 1 + exp(-vh)]’”}. (4.31) 

Substituting vel-I  back into (4.20a, 6’) and identifying 77; = i j ;  ( n  = 1,2,  . . . , v I  -2) 
and (cf (4.15)) 

[ 1 + e ~ p ( - r ] ~ ) ) l [ l + e x p ( - r ] b , , ~ ~ ) ] =  l+exp(-ij’) (4.32) 

reproduces the basic equations for the case Po = vI  , (4.27). Through the same procedure, 
equation (4.7) for the free energy becomes (4.28). It is thus proved that both the free 

t An exact enumeration of the basic equation in [18] was followed by an analytic solution (see [18a]). For 
recent developments see [ 18bI. 
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energy and  breather masses change smoothly with the coupling constant Po. However, 
at finite temperatures, it is clear that ~ ' ( 0 )  # g'(O), i.e. the soliton mass is discontinuous 
at  the point Po = v ,  . The origin of such discontinuity in the soliton mass is in the fact 
that the longest breather dissociates into a soliton-antisoliton pair when Po passes v 1  
from larger values. Since the free energy is continuous at Po = v , ,  the soliton mass 
should decrease suddenly at  this point to cover a sudden disappearance of parts of 
the free energy carried by the dissociated breathers. I t  is seen in figure 3 that the 
magnitude of discontinuity decreases with increasing coupling constant Po and increases 
with increasing temperature. A further discussion on the soliton-mass discontinuity 
will be given in the final section. 

112 2 1 3  3 / 4  1 
I I 1 

Figure 3. Plot of the free energy F (full circles), soliton mass (crosses) a n d  lowest-breather 
mass M , ,  (open circles) as functions of t h e  coupling constant F / T  at  T =  2. These discrete 
points are connected by broken curves for clarity. The soliton and  lowest-breather masses 
at T=O are  also plotted (full curves) for comparison. The mass and  temperature are 
measured in units of the zero-temperature free soliton mass, M : .  

There are two cases in which we can solve the basic equations analytically: the 
free MTM limit p = ~ / 2 + 0  ( P o =  2 + 0 )  and the free SG limit p = T - 0  (Po= v 1  - -CO) .  

By analysing the latter case, one of us  [ 181 recently reached an  essential understanding 
of the role of breathers in the quantum SG thermodynamics, which had been a 
challenging problem in soliton physics [6]. As for the former case, 8Yh=O and 
e b h  - - 6 ( a )  and (4.30) can easily be solved to give 

( Z +  l ) ?  
l+exp(-Tb)----- ' - z 2 + 2 z  (4.33) 

where 2 = exp(Eh /  T ) .  From (4.15) and (4.33) we find that the magnitude of discon- 
tinuity in the soliton mass at Po= 2 is 

A M ( 2 ,  T)=&'(O)-?(O)= T I n [ l + e x p ( - l / T ) ] .  (4.34) 

Finally, we have numerically solved the basic equations for the cases Po = v l  + 1/  v 2 ,  
v 1  + O  and v 1  and evaluated the coupling constant dependencies of the free energy, 
shortest-breather mass and  soliton mass. Figure 3 shows these quantities at T = 2 ,  The 
results are consistent with our analysis above. 
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5. Summary and conclusion 

In this paper, we have formulated the MTM-SG thermodynamics in the attractive 
coupling regime and in the zero-charge sector by the BA variational method. We have 
started with the Bethe wavefunction found by BT and Korepin and constructed the 
physical vacuum by filling the Dirac sea modes. The elementary excitations upon the 
physical vacuum are breathers, holes and K excitations and their renormalised energy 
spectra can be written in terms of the renormalised soliton mass. We have then 
considered a generic excited state, i.e. a simultaneous excitation of various fundamental 
objects and imposed PBC on each elementary excitation as well as the Dirac sea modes. 
This procedure has led to the quantisation of the physical momenta of elementary 
excitations in terms of renormalised two-body phase shifts as described in (3.22). This 
equation plays an  important role in the BA variational formulation of the MTM thermody- 
namics. The next step toward the thermodynamics is to express the free energy as a 
functional of density distributions p , ( a )  and ; ! (a )  with i representing breathers, holes 
and  K excitations and  to minimise it with respect to independent variations of these 
densities. Thus we reach (4.5) which, along with (4.1), constitute the basic equations 
for the MTM thermodynamics. By solving these equations one can find densities of 
elementary excitations, the free energy and hence all the thermodynamic quantities. 
Moreover, we have shown that the quantities &,(a) f o r j  denoting breathers and holes 
represent the excitation spectra at finite temperatures. Equations (4.20)-(4.23) are the 
simplified version of (4.5) and are suitable for actual calculations. These equations 
can be further simplified in the limit Po= v 1  + O  as (4.20a, b ' )  and (4.25). On the other 
hand, for the rational coupling constant Po = vI  or p = T (  1 - 1 /  v I )  the basic equations 
are (4.27). By analysing the cases Po = vl and v 1  + 0, we have shown that the free 
energy is an analytic function of the coupling constant, which is consistent with Araki 
[ 171. We have also found that breather masses are continuous but the soliton mass is 
discontinuous at the point Po= v 1  due to the dissociation of the longest breather into 
a soliton-antisoliton pair when Po passes v l  from larger values. In the analytically 
soluble case Po = 2 + 0, i.e. the free MTM limit, (4.34) gives the magnitude of discontinuity 
in the soliton mass. 

We have successfully applied the BA variational method to the MTM-SG thermody- 
namics. However, as occasionally pointed out in the text, the method contains several 
ambiguities. It is noted that some of the phase shifts, A, have discontinuities at a = 0. 
For example, A:F(a)  is discontinuous at a = 0 (cf (3.14) and (3.16)), and its a derivative 
contains a &function term. In the BA variational method, we always ignore such 
singular terms without any plausibility arguments. Accordingly, the physical meaning 
of, say, & ? ( a )  as the finite-temperature excitation spectrum of the shortest breather 
also becomes ambiguous. 

In a recent paper, one of us has developed a fermionic perturbation theory for the 
statistical mechanics of the non-linear Schrodinger model and  removed the same 
ambiguities as above in this model [ 191. An application of this approach to the MTM 

will be reported in a future publication. 
Finally, some remarks are due  on the discontinuity of the soliton mass. It is first 

noted that, due to complete integrability, the intrinsic interaction of the MTM does not 
bring about thermal equilibrium and the existence of a heat bath is essential for reaching 
thermal equilibrium. In  the BA variational formulation, we implicitly assume that 
interaction with the heat bath realises thermal equilibrium but not finite lifetimes of 
elementary excitations. However, this is apparently not true; the real situation is a 
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competition between thermal fluctuation and  complete integrability. For example, 
with increasing temperature the soliton mass discontinuity becomes pronounced 
(cf (4.33)), but at the same time thermal fluctuation becomes stronger and  suppresses 
the singularity. Now a crucial question is whether the thermal fluctuation can com- 
pletely destroy the singularities arising from complete integrability. At present we d o  
not know an  answer to this question, but we can point out the following things. 

( i )  A satisfactory answer to this question can be obtained only when we go beyond 
the BA formalism and explicitly consider the interaction between a heat bath and  the 
BA system. 

( i i )  An affirmative answer to the question would greatly decrease the importance 
and  usefulness of the MTM-SG theory. 

Johnson and Fowler have recently discussed the problem of soliton mass discon- 
tinuity [20]. They criticised that the E function defined as in (4.6) does not correspond 
to the physical soliton mass at finite temperatures. They considered the simple case 
p = f . r r + O  and argued that the BA wavefunction at .rr/2 which contains only solitons 
and antisolitons and that at ~ r / 2  + 0 which contains a zero-binding-energy breather are 
physically indistinguishable. Thus the physically measured soliton mass must be 
continuous whereas the E function is discontinuous. In making this comparison they 
have implicitly assumed the existence of an  arbitrarily small non-integrable perturbation 
H '  in the physical measurement so that they can rearrange the zero-binding-energy 
breather as a pair of solitons and antisolitons. 

Because they have taken the limit p + .rr/2 before setting H ' +  0, the physical mass 
as a function of H '  and p is continuous in p for any small but non-zero value of H ' .  
However, if one takes the limit H'+O first and if one ignores the thermal fluctuation 
effect as described above, then our ~ ~ ( 0 )  should correspond to the soliton mass and is 
a discontinuous function in p. As long as one is considering the completely integrable 
system ( H ' =  0) the definition of ~ ~ ( 0 )  as the soliton mass is unambiguous (see deriva- 
tions (4.8) - (4.14) ) . 
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Appendix 

Here we derive (3.19) from (3.10b). The problem is the fourth term on the right of 
(3.10b): 

I = I' d a  F,(a)-@,(a,  da a , ) .  ( A l l  

Remember that the ith K excitation has length n = n, = 1 + i v , .  Introduce the Fourier 
transform of F, (a ) :  

a 
- X  

A- 

F ; ( Y )  = I_, d a  exp(- iay)F , (a ) .  
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Similarly the Fourier transform of 4 ( a ,  a,)  is written as G(y, a, )  and that of @,(a, a,) 
as 6 , ( y ,  a,). Then the Fourier transform of (2.30) is 

As for the Fourier transform of the G function as given by (2.22): 

sin Q 
G k ( y ,  a,) =- d a  exp(-iay) 

1y I' --s cosh ( a  -(U,) -COS Q 

where Q = k p  - ( n ,  - B,)T and (0) 
With the use of (A2) and (A3), ( A l )  becomes 

Q - 2 4  Q/27r] with [ ] denoting Gauss' symbol. 

= A ( n , ) @ , ( a , ,  a,) - n A ( n , ) A ( n , ) E ( a ,  - a , )  -271A(n , )F , (a , )+  C (A4? 

where Q; = (n ,  * 1)p - ( n ,  - B,)m Note that the first and third terms in (A4) cancel 
the second and third terms in (3.10b) and 

C = - 
2 cosh p y  

sinh .rry sinh( x - ply 

X 

$exp[i(a, - a,)y] sinh 

The integration in (A5) becomes a contour integration by an addition of the integration 
along the upper semicircle in the complex y plane. There are two types of poles inside 
this contour: y = ik and k.iri/w, k = 1 , 2 , .  . . . After a straightforward calculation, we 
find that the first-type poles contribute 

which cancels the first term on the right of (3.10b). On the other hand, the second-type 
poles contribute 

- 1, - i l n (  
sin h{ x [ a, - a, + i  w ( n, + n, ) - i x ( I + M, + 1 ) ] / 2 w } 
sin h{ x [ a ,  - a, + i w ( n ,  + n, ) + i 7~ ( I + M, + 1 ) ]/ 2w } 

h f ,  - 1 

l = - t M - I j  

(A71 
sinh{ T [ a ,  - a, + i w ( n ,  + n, ) - i 7~ ( I + M, + 1 ]/ 2 w )  

sinh{x[a,-a , - iw(n,+ n , ) + i ~ ( I + M , - l ) ] / 2 w )  
X 

which is - (the right-hand side of (3.19)). The remaining second term on the right of 
(A4) is cancelled by a jump in the integer of (3.9) when a, passes a,. In  the scattering 
of a hole with the ith K excitation, (2.28) tells us that such a jump is A (  7,). Applying 
a similar argument to (3.31, one can show that the discontinuity is now A ( n , ) A ( n , )  
and precisely cancels the second term on the right of (A4). 
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